
Eur. Phys. J. B 5, 317–324 (1998) THE EUROPEAN
PHYSICAL JOURNAL B
c©

EDP Sciences
Springer-Verlag 1998

Effective Hamiltonians for holes in antiferromagnets:
a new approach to implement forbidden double occupancy?
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Abstract. A coherent state representation for the electrons of ordered antiferromagnets is used to derive
effective Hamiltonians for the dynamics of holes in such systems. By an appropriate choice of these states,
the constraint of forbidden double occupancy can be implemented rigorously. Using these coherent states,
one arrives at a path integral representation of the partition function of the systems, from which the
effective Hamiltonians can be read off. We apply this method to the t−J model on the square lattice
and on the triangular lattice. In the former case, we reproduce the well-known fermion-boson Hamiltonian
for a hole in a collinear antiferromagnet. We demonstrate that our method also works for non-collinear
antiferromagnets by calculating the spectrum of a hole in the triangular antiferromagnet in the self-
consistent Born approximation and by comparing it with numerically exact results.

PACS. 75.10.Jm Quantized spin models – 71.10.Fd Lattice fermion models – 75.50.Ee Antiferromagnetics

1 Introduction

It is widely recognized that an accurate description of
the dynamics of holes in antiferromagnetically (AF) or-
dered materials is an important first step towards an
understanding of the essential physics of the cuprate
superconductors. Consequently, numerous investigations
[1–13] have dealt with the problem of a single hole in a
square-lattice antiferromagnet. Most of these studies are
based on an effective Hamiltonian H� [14,15] which de-
scribes the hole as a spinless fermion which is coupled to
bosons representing the collective excitations (magnons)
of the antiferromagnetic background. The structure of this
effective Hamiltonian reflects the two-sublattice structure
of the square lattice AF. When the hole hops between
nearest neighbour lattice sites, it necessarily disturbs the
magnetic order. Thus, any move of the hole requires
absorption or emission of a magnon. Derivations of H�
from the t−J Hamiltonian have revealed the approxi-
mate nature of this effective Hamiltonian [16], and to
obtain the spectrum of a hole from H� further approx-
imations are necessary. Most often, the fermion-magnon
coupling is treated in the self-consistent Born approxima-
tion (SCBA) which was already used in the original studies
by Kane et al. [14] and Marsiglio et al. [15]. Surprisingly,
the approximate spectra obtained in this manner agree
excellently with the spectra of small clusters obtained by
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numerically exact diagonalization of the t−J Hamiltonian
for these clusters.

Apart from its relevance to the physics of cuprate su-
perconductors, the dynamics of holes in ordered antifer-
romagnets is a highly nontrivial problem of the physics of
strongly correlated electron systems, and it is therefore of
fundamental theoretical interest. Here, we shall present a
derivation of effective Hamiltonians for holes in AFs which
is not restricted to any particular type of magnetic order.
Our method does not provide us with a unique effective
Hamiltonian for an arbitrary number of holes. Rather the
cases of a single hole, two holes and in general an arbitrary
but fixed number of holes have to be treated separately.
While our presentation remains general, we shall confine
ourselves to the single-hole problem in order to demon-
strate our method’s practical applicability. In particular,
we shall derive and evaluate the effective HamiltonianH4
for a single hole in the triangular AF.

2 Effective Lagrangian

For definiteness, we consider the t−J Hamiltonian,

H = −t
∑
〈r,r′〉
σ

P̂ (c†r,σcr′,σ + h.c.)P̂ + J
∑
〈r,r′〉

Ŝr · Ŝr′ . (1)

t and J are the single particle hopping matrix element
and the exchange constant, respectively, the operator P̂
projects onto states in which each of the Ns lattice sites
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is either empty or singly occupied, and Ŝr = 1
2c
†
r,ασα,βcr,β

is the electron spin expressed in terms of creation and
annihilation operators, c†r,α and cr,α, for fermion states at
site r with spin projection α. The sums in (1) run over
pairs 〈 , 〉 of nearest neighbour sites of the lattice.

In order to cast the partition function Z =
tr[exp{−βH}] into the form of a path integral, we intro-
duce the following coherent states [13] for each lattice site
r (we omit the site index wherever this does not lead to
ambiguities):

|ω〉 = e[ηc−c
†η∗]|Ω〉,

|Ω〉 = c†|0〉,

c† = e−iφ/2 cos
θ

2
e−iψ/2c†↑ + eiφ/2 sin

θ

2
e−iψ/2c†↓. (2)

Here, η, η∗ are Grassmann variables, and |0〉 is the vac-
uum with no spins present. Obviously, |Ω〉 is a one-fermion
state with spin in the direction (θ, φ) on the sphere. The
inclusion of a phase factor which depends on the third
Euler angle ψ is necessary, if |Ω〉 and η are to satisfy the
following requirements: (i) |Ω〉 is to transform covariantly
under all SU(2) operations, while (ii) η remains invari-
ant under these operations. As will be seen shortly, both
requirements appear natural in view of the physical inter-
pretation of the variables Ω = (ψ, θ, φ) and η. It is easily
checked that the states |ω〉 include the empty and the spin-
up and spin-down states of the fermion, but exclude the
doubly occupied state. In fact, the states |ω〉 are complete
in this three-dimensional space,∫

dω |ω〉〈ω| :=

∫
dΩ

1

2

∫
dη∗dη e−η

∗η|ω〉〈ω|

=

∫
dΩ

1

2

∫
dη∗dη e−2η∗η {η η∗|0〉〈0|+ |Ω〉〈Ω| }

= 13 (3)

where
∫
dΩ · · · =

1

8π2

∫ 4π

0
dψ
∫ π

0
dθ sin θ

∫ 2π

0
dφ ... The

Euler angles Ω describe the spin degrees of freedom and
the Grassmann variables η and η∗ a spinless fermionic
hole. Thus the requirement (ii) is cogent. With these co-
herent states, the standard steps towards a path integral
representation of the partition function yield

ZM =

∫
DM [Ω]

∫
DM [η∗, η]

×
M∏
τ=1
r

(
〈Ωτ−1,r|Ωτ,r〉

1

2
e−2η∗τ,rητ,r

)

× exp

{∑
τ,r

η∗τ−1,rητ,r
〈Ωτ−1,r|Ωτ,r〉

+
∑
τ

ln

[
1 +
〈ωτ−1|e−∆τH − 1|ωτ 〉

〈ωτ−1|ωτ 〉

]}
, (4)

with DM [Ω] =
∏M
τ=1,r dΩτ,r and DM [η∗, η] =

∏M
τ=1,rdη

∗
τ,r

dητ,r. Here, sums and products run over the M (imag-
inary) time slices of the Trotter decomposition of

exp(−βH) (subscript τ) and over the Ns lattice sites (sub-
script r). ∆τ = β/M is the width of the time slices. The

boundary conditions are Ω0,r = ΩM,r and η
(∗)
0,r = −η(∗)

M,r.
The final step in the conversion of ZM into a path inte-
gral would be to take the continuum limit M →∞ in the
time direction. This meets with difficulties. After the ex-
pansion of the second exponential in (4) to linear order in

∆τ , a factor
∏
τ,r e

−η∗τ,rητ,r remains in the integrand which
is therefore ill defined in the limit M → ∞. However, as
we shall show now, the individual summands Zn−hole in
the decomposition

ZM = Z0−hole
M + Z1−hole

M + . . .+ Zn−holeM + . . . (5)

of the partition function ZM into 0−, 1−, . . . n−hole con-
tributions are well-defined in the τ -continuum limit. Since
in this work we are interested in the one-hole effective
Hamiltonian, which can be extracted from Z1−hole, we
confine our attention to the first two terms of (5). The cru-
cial elements in this decomposition are the weight factors
e−2η∗τ,rητ,r = 1 − 2η∗τ,rητ,r in the integrand of (4). From
(3) it follows that the identity in such a factor projects
onto configurations with a hole at (τ, r) while the sec-
ond term, −2 η∗τ,rητ,r, projects onto configurations with
an electron at (τ, r). Thus, by retaining in the integrand
of (4) only the term

∏
τ,r

(
−2η∗τ,rητ,r

)
of the expansion

of
∏
τ,r

(
1− 2η∗τ,rητ,r

)
, one obtains Z0−hole, the partition

function with no hole at all which is, of course, the parti-
tion function of the Heisenberg Hamiltonian. Similarly, by
retaining those terms of the expansion which contain for
each time slice τ just Ns−1 factors −2η∗τ,rητ,r one obtains

Z1−hole
M . (The number of holes remains constant in time.)

Using the identity∏
τ,r

(
1

2
e−2η∗τ,rητ,r

)∣∣∣∣
1−hole

=
1

2M

∏
τ,r

(
e−η

∗
τ,rητ,r

)∣∣∣
1−hole

,

(6)

which holds between the one-hole projectors on both sides,
we can now cast Z1−hole

M into the form

Z1−hole
M =

1

2M

∫
DM [Ω]

∫
DM [η∗, η]

×
M∏
τ=1
r

(〈Ωτ−1,r|Ωτ,r〉)

× exp

{
−
∑
τ,r

(
η∗τ,rητ,r −

η∗τ−1,rητ,r
〈Ωτ−1,r|Ωτ,r〉

)

+
∑
τ

ln

[
1 +
〈ωτ−1|e−∆τH − 1|ωτ 〉

〈ωτ−1|ωτ 〉

]}∣∣∣∣∣
1−hole

.

(7)

The additional factor of 1/2 associated with each time
slice τ finds a natural explanation: It compensates for the
integrations over the redundant spin variable at the posi-
tion of the hole [17]. Obviously, the integrand of (7) is well



W. Apel et al.: Effective Hamiltonians for holes in antiferromagnets 319

defined in the τ -continuum limit M →∞. Performing this
limit, one obtains

Z1−hole =

∫
D[Ω]

∫
D[η∗, η] e

∫
β
0
dτL

∣∣∣∣
1−hole

(8)

with the classical Lagrangian for one hole

L =
∑

r

[1− η∗r (τ)ηr(τ)] 〈Ωr(τ)|Ω̇r(τ)〉

+
∑

r

η∗r (τ)η̇r(τ) − 〈ω(τ)|H|ω(τ)〉1−hole. (9)

Here, |ω(τ)〉 =
∏

r |ωr(τ)〉, and 〈ω(τ)|H|ω(τ)〉1−hole de-
notes that part of the expectation value which is bilinear
in the Grassmann fields η∗, η.

It should be clear from these considerations that in
order to determine the effective interaction between a pair
of holes, one will have to analyze the 2-hole contribution
to ZM . In calculating it from the 1-hole contribution by
integrating over the spin degrees of freedom, one would
miss a part of this interaction.

Evaluating (9) with the states (2) and the Hamiltonian
(1) of the t−J model on an arbitrary lattice, we obtain
L = Lkin+Lt+LJ , where (we omit total time derivatives)

Lkin =
∑

r

[
η∗r η̇r+

i

2
η∗rηrψ̇r−

i

2
(1−η∗rηr) φ̇r cos(θr)

]
, (10)

Lt = −t
∑
〈r,r′〉

{
η∗r′ηre

− i2 (ψr′−ψr)

×

[
cos

(
φr − φr′

2

)
cos

(
θr − θr′

2

)
+ i sin

(
φr−φr′

2

)
cos

(
θr+θr′

2

)]
+(r↔r′)

}
(11)

and

LJ = −J
∑
〈r,r′〉

(1− η∗rηr − η∗r′ηr′) Sr · Sr′ . (12)

The Heisenberg term LJ accounts for the interaction be-
tween spins S = 1

2 (sin θ cosφ, sin θ sinφ, cos θ) at sites
where no hole is present. Lt describes the hopping of the
hole; the hopping energy depends on the state of the spins.
Finally, Lkin contains the kinetic terms of a spinless hole
(η∗η̇), and a spin 1/2, i.e. φ̇ cos(θ). In addition, two terms
couple the hole to the angular degrees of freedom. The
second cancels the kinetic term of the spin at sites where
a hole is present. The first has the form of a gauge inter-
action with the field ψ. It is tempting to use a parameter-
ization in which the factor exp( i2ψ) is absorbed in η, since
then, all the ψ dependent terms in L disappear. However,
after such a gauge transformation, η is no longer invariant
under SU(2) operations, as explained above in connection
with the choice of the coherent states (2). Since this has
unwanted consequences, we do not follow this route.

In summary, our procedure for obtaining effective
Hamiltonians consists of the following steps: first we rep-
resent the partition function of the initial quantum Hamil-
tonian as a discrete-time path integral; then, we identify

that part of the partition function that corresponds to
the number of holes we wish to consider; in this part, we
then perform the continuum limit to obtain the classical
Lagrangian; finally, we translate back to an effective quan-
tum Hamiltonian.

The LagrangianL, (10-12), still represents the full non-
linear problem of a hole interacting with the spin back-
ground. In the following, we shall confine ourselves to a
spin wave expansion around the classical spin groundstate
of L. In this picture, the hole moves in a spin background
described by angular fields which deviate little from their
groundstate. The spin wave expansions have, of course,
to be performed separately for the case of collinear spin
order (square lattice AF) and for the case of planar spin
order (triangular lattice AF). We shall briefly rederive the
quantum Hamiltonian, H�, which is well known for the
case of collinear spin order. For the case of planar spin
order, we obtain a significantly different effective Hamil-
tonian H4. To check the validity of the approximations
that lead to H4 we shall calculate the one hole spectral
properties that follow from H4 and compare them with
results obtained by numerically exact diagonalization of
the t−J model for small finite lattice cells.

3 One hole on a square lattice

The two sublattice classical AF order is reproduced by as-

signing the value π/2 to θr and the values φ
(0)
r = ±π/2

to φr for r from the A or B lattice, respectively. The de-
viations from the ordered groundstate, xr and pr defined
by

φr = φ(0)
r +

√
2xr θr =

π

2
+
√

2pr , (13)

are canonically conjugate harmonic oscillator fields as can
be seen from Lkin. Now, we expand L up to quadratic
order in the amplitudes a = (x− ip)/

√
2 and a∗ and keep

in the quadratic term only the leading zero-hole contribu-
tion. Then, the spin and the hole degrees of freedom decou-

ple in Lkin. We redefine the hole field by h ≡ η e
i
2 (ψ−φ(0)).

Then, all the phases in the hopping term in the path in-
tegral become equal; the field ψ disappears from L and
is integrated out. Finally, we translate back to operator
form and get

H� = −t
∑
〈r,r′〉

[
h†r′hr i

(
a†r − ar′

)
+ h.c.

]
+
J

2

∑
〈r,r′〉

(
a†rar + a†r′ar′ − a

†
ra
†
r′ − ar′ar

)
+J
∑

r

(
h†rhr −

1

2

)
. (14)

H� is, up to a canonical transformation (ar → −iar) iden-
tical with the Hamiltonian considered in [15]. The last
term in H�, containing the hole number, accounts for the
breaking of four bonds per hole in the classical ground-
state.
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4 One hole in the triangular lattice

In the classical limit, the groundstate of the t−J model at
half filling is the well-known planar 120◦ spin structure:

θ
(0)
r = π/2 for all r and φ

(0)
r = 2π/3, 0,−2π/3 for the

A, B and C sublattice, respectively. As in the case of the
square lattice, we describe the deviations from this ordered
groundstate by the spin wave amplitudes xr and pr which
are canonically conjugate harmonic oscillator fields.

Proceeding as in the square lattice case, i.e. expand-
ing to second order in the amplitudes a and a∗ and inte-
grating over ψ, one would be left with terms in Lt that
couple the hole motion to zero energy spin modes. But
these modes are uniform spin rotations which are exact
symmetries of the initial model (1). Therefore, they can-
not appear in any order of a perturbation expansion. In
the Appendix, we trace this apparent inconsistency back
to the integration over the field ψ. We show how to derive
a result which is free of zero modes, as it should be, and
we explain why the same difficulty does not occur in the
case of the square lattice. Retaining terms of the same or-
der in the amplitudes a, a∗ as in the square lattice case,
we find the following effective Hamiltonian for one hole in
the triangular AF (in momentum space)

H4 =
3J

4

∑
q

{
(2 + wq)a†qaq −

3wq

2
(a†−qa

†
q + a−qaq)

}
−

3JNs
8

+
∑
q

εq h
†
qhq

+
1
√
Ns

∑
q,q′

{
fq,q′ h

†
qhq′ aq−q′ + h.c.

}
. (15)

The terms in the first line are nothing but the linear spin
wave approximation (LSW) of the triangular Heisenberg
AF. The last line contains the coupling between the hole
and the magnons with the hole-magnon vertex

fq,q′ = 3
√

3i

[
−tγq′ +

J

4
γq−q′

]
+
√

3

(
1

2
+ wq−q′ − iγq−q′

)
×

[
t(wq − wq′) +

J

2
(1− wq−q′)

]
. (16)

Here, wq is defined by

wq + iγq =
1

3

3∑
j=1

eiq·δj (17)

and δj = (cosϕj , sinϕj), ϕj = ((2π/3)j), are the vectors
to three of the six nearest neighbour sites on the triangular
lattice. As opposed to the square lattice, the hole can hop
on the triangular lattice without emission or absorption
of a magnon. This is expressed by the second line of (15)
where

εq =
3J

4
− 3twq , (18)

ωΓ

K
-4

-2

0

2

4

6

Fig. 1. Spectral density A(k, ω) in SCBA approximation for
Ns = 36 × 36 sites, t = J = 1, and for k values taken along a
straight line from Γ to K (cf. Fig. 2) (η = 0.1).

is just half the dispersion of a particle hopping between
nearest neighbour sites of the empty triangular lattice.
H4 constitutes our main result for the Hamiltonian of
one hole in the t−J model on a triangular lattice in spin
wave approximation [20]. In the following, we analyze its
content by treating the hole magnon coupling in the sim-
plest approximation.

4.1 Born approximation of the selfenergy

Following previous treatments of the square lattice case
[15], we employ the SCBA to obtain the selfenergyΣ(k, ω)
of one hole. We denote the Green’s function of one hole
by G(k, ω) = (ω − εk −Σ(k, ω))−1. Then,

ΣSCBA(k, ω) =
1

Ns

∑
k′

∣∣uk−k′fk,k′ + vk−k′f
∗
k′,k

∣∣2
×GSCBA(k′, ω − ωk−k′) . (19)

Here, ωq =
3J

2

√
(1 + 2wq)(1− wq) is the spin wave en-

ergy. uq and vq are the Bogoliubov amplitudes,

uq =

{
1

2

[
3J(1 + wq/2)

2ωq
+ 1

]}1/2

vq = sgn(wq)

{
1

2

[
3J(1 + wq/2)

2ωq
− 1

]}1/2

.

From the Green’s function, the spectral density is obtained
as A(k, ω) = − 1

π
limη→0+ ImG(k, ω + iη). The parame-

ter η regularizes the spectral density1. Equation (19) has
been solved by numerical iteration starting with Σ = 0
for a lattice of Ns = 36 × 36 sites with periodic bound-
ary conditions. In Figure 1 we display for t = 1, J = 1
the spectral density A(k, ω) on k–points along a straight

1 For Ns = 24 the crystal momentum of the one hole ground-
state is an interior point close to K of the Brillouin zone. This
is the reason, why for Ns = 24 the values of δEex1 deviate
significantly from the rest.
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Table 1. Exact and approximate groundstate energies of samples of Ns sites of the t−J model with nh(= 0, 1) holes. E0:
groundstate energies in the half filled case. E1,loc: energies for creating a localized hole. δE1: energy gain of the hole due to
delocalization.

exact diagonalization linear spin wave, SCBA

t = 0 t = 0.1 t = 1 t = 0 t = 0.1 t = 1

nh = 0 nh = 1 nh = 1 nh = 1 nh = 0 nh = 1 nh = 1 nh = 1

Ns Eex0 Eex1,loc δEex1 δEex1 ELSW0 ESCBA1,loc δESCBA1 δESCBA1

9 −5.25000 0.50000 0.40000 4.00000 −5.62500 0.66884 0.31627 3.18974

12 −7.32396 1.15197 0.38544 4.09035 −7.25658 0.64520 0.32854 3.39377

21 −11.78091 0.56862 0.39986 4.06326 −11.82919 0.65145 0.32504 3.35476

241 −12.93870 0.92897 0.29581 3.42937 −13.04174 0.65227 0.32561 3.36573

27 −15.12597 0.59201 0.38805 3.99864 −15.04634 0.65052 0.32572 3.36510

line from the centre Γ to the corner K of the Brillouin
zone (cf. Fig. 2). The main feature of the spectra is a pro-
nounced quasiparticle peak. For t = 0, the quasiparticle
dispersion is flat throughout the Brillouin zone. For in-
creasing t, a dispersion with the minimum at Γ emerges
and the peak broadens. Around Γ , the quasiparticle peak
persists for values of t up to 10J ; near K it already decays
for t > 0.2J .

4.2 Comparison with exact numerical diagonalization
results

As we have pointed out in the course of the derivation,
the effective Hamiltonian H∆ is an approximate result,
and the computation of the one-hole Green’s function is
based on the self-consistent Born approximation. In order
to have a check on the validity of these approximations, we
computed the spectral density A(k, ω) and related quanti-
ties directly for the t−J model on small periodic samples
of the triangular lattice with Ns sites. Numerically ex-
act results for the quantities in question were obtained
by applying the Lanczos technique (see e.g. [1]) to the
Hamiltonian of these samples. In these computations, the
exchange constant J has been set equal to unity through-
out. Results for the groundstate energies for half filling
(nh = 0) and for one hole (nh = 1) are displayed in Ta-
ble 1 together with the approximate LSW and SCBA ener-
gies for the same sample sizes. For t 6= 0, the groundstate
wave function of the hole is an extended state with crystal
momentum at the high symmetry points of the Brillouin
zone; Γ for odd Ns and K for even Ns.

For the half filled case, the t−J Hamiltonian reduces
to the Heisenberg Hamiltonian, and it is well known that
in this case the LSW results ELSW0 are in good agreement
with the exact results Eex0 , in particular for the larger
system sizes [18]. Turning to the one-hole results, we first
discuss the case t = 0 in which the hole is localized. E1,loc

is the energy needed to create a localized hole in the half
filled groundstate. There is a strong even-odd staggering
in the exact results (2nd column of Tab. 1): in the even
samples (Ns even) in which the spins pair up to a singlet,
Stot = 0, the “binding energy” per electron is larger than

3
2π

A

B

C

K

Γ

kz

kx

4π
3

Fig. 2. The Brillouin zone of the Ns = 21 system shows a
sixfold symmetry.

in the odd systems which contain an unsaturated spin,
Stot = 1/2. This is a finite size effect which, as is seen in
Table 1, decreases very slowly with the sample size. Nev-
ertheless, the exact values Eex1,loc appear to converge to the

SCBA value ESCBA1,loc in an alternating fashion. That the

even-odd staggering is absent from ESCBA1,loc is understand-
able, since the SCBA is based on the spin wave spectrum
of the infinite sample.

For finite hopping amplitude t 6= 0, the hole becomes
delocalized. It is suggestive to write the hole energy as
E1 = E1,loc− δE1(t), where δE1(t) is the energy gain due
to delocalization of the hole wave function. The results in
Table 1 show that δE1 increases linearly with t, δE1(t) =
αt. This assertion has been verified by computing δE1(t)
for a sequence of values 0.1 < t < 1 not shown in Table 1.
The coefficient α is seen to differ significantly between the
exact results and the SCBA, αex ≈ 4, αSCBA ≈ 3.36. At
present, we are not in a position to decide whether this
discrepancy is inherent in the effective Hamiltonian H4
or whether it is a deficiency of the SCBA.

Next we compare the exact and the SCBA results for
the spectral density A(k, ω). Figure 3 shows the spectral
density of one hole in the Ns = 21 sample at the centre (Γ )
and at the corner (K) of the Brillouin zone (cf. Fig. 2) for
the parameter values J = 1 and t = 0.1, t = 1. The solid
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−4 −2 0 2 4 6
ω

0

1

2

A
(k

,ω
) exact Ns=21

SCBA Ns=21
SCBA Ns=36x36

0

1

2

A
(k

,ω
)

Γ

Γ

t=0.1, J=1

t=1, J=1

(a)

−4 −2 0 2 4 6
ω

0

1

2

A
(k

,ω
) exact Ns=21

SCBA Ns=21
SCBA Ns=36x36

0

1

2

A
(k

,ω
)

K

K t=0.1, J=1

t=1, J=1

(b)

Fig. 3. Spectral density (a) at the Γ point and (b) at the corner K of the Brillouin zone for t = 0.1 and t = 1 for J = 1.
The solid line shows the exact results for the Ns = 21 sites, the dashed (dotted) line the result of the SCBA for Ns = 21
(Ns = 36× 36) sites. ω is measured against Eex0 and ELSW0 (η = 0.1).

lines are the results of the exact diagonalization which
were obtained from a continued fraction expansion [19]
of the Lanczos results. The dashed lines are the result of
the SCBA for Ns = 21. For t = 0.1 there is a well defined
quasiparticle peak in the exact results at the bottom of the
spectrum. This peak is nicely reproduced by the SCBA.

For t = 1, a quasiparticle peak is still visible at Γ while
one finds a broad structure at the corner of the Brillouin
zone. The SCBA reproduces the peak in the spectrum at
Γ ; however, its position is shifted to higher energies. At
K, the SCBA spectrum shows a structure which becomes
broader when the system size is increased from Ns = 21
to Ns = 36× 36 (dotted lines). On the other hand, in all
cases where we find a quasiparticle peak, the SCBA results
for Ns = 21 and for Ns = 36 × 36 are indistinguishable.
Thus we conclude that for t = 1 the quasiparticle peak
disappears if one changes the wavevector from the Γ point
to the corner of the Brillouin zone, cf. Figure 1. While
there remain differences, we find that overall the SCBA
reproduces the qualitative features of the exact results.

Finally we discuss the energy dispersion of one hole.
We define the dispersion as the difference of the position
of the maximum of A(k, ω) for a given k and the one
hole creation energy ESCBA1,loc (see Tab. 1), i.e. the position

Γ A B C K
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0.00

0.20

di
sp

er
si

on

exact  
−3twq

SCBA

t=0.1, J=1

Ns=21

Fig. 4. The dispersion of one hole as defined in the text for
t = 0.1, J = 1 and Ns = 21 sites. The symbols (◦) show the
exact results, the diamonds (�) the results of the SCBA and
the squares (�) the lowest order approximation for the Green’s
function.
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a) b)

Fig. 5. Spin arrangement of |Φr〉 (top) and cr+δ↑c
†
r↑|Φr〉 (bot-

tom) for (a) the square lattice AF and (b) the triangular AF.

of the maximum for t = 0. In Figure 4, we show the dis-
persion for Ns = 21 sites for t = 0.1 and J = 1. The
circles (connected by solid lines) show the results of the
exact diagonalization. They follow closely the free disper-
sion of the hole, εq−3J/4 = −3 t wq (shown as boxes). The
SCBA (diamonds) yields an improvement towards the ex-
act results for all points of the Brillouin zone. Obviously,
the free dispersion is already a good approximation of the
exact results.

5 Summary

In this work, we have developed a formalism which allows
the derivation of effective Hamiltonians for the motion of
holes in an arbitrarily ordered spin background. Funda-
mental to this development was the construction of a co-
herent state approximation for the electron states, which
automatically excludes double occupancy. In this repre-
sentation, the partition function of an arbitrary number
of holes can be cast into the form of a path integral which
still contains the full non-linear coupling of the holes to
the spin degrees of freedom of the background. As a first
application of this formalism, we have rederived the well
known effective HamiltonianH� for the motion of a single
hole in the collinear antiferromagnetic order of the square
lattice antiferromagnet in the linear spin wave approxima-
tion. The derivation of the effective Hamiltonian H4 of a
single hole moving in the planar spin arrangement of the
triangular antiferromagnet also makes use of the linear
spin wave approximation. However, in this case, special
care has to be taken to ensure a proper treatment of the
Goldstone modes which must not couple to the hole [20].
In contrast to the square lattice AF, where hopping of the
hole from a lattice site r to a neighbouring site r+δ is
necessarily accompanied by a spin flip at site r, the same
hopping process requires only a rotation of the spin at r
by ± 120◦ in the case of the triangular AF, see Figure 5.

In other words, if |Φ
(0)
r 〉 is the groundstate with one

hole at r in the undistorted spin background of the AFs,

then the hopping matrix element 〈Φ(0)
r+δ|cr+δσc

†
rσ|Φ

(0)
r 〉 is

always zero for the square lattice AF, while it is +1/2 for
the triangular AF. This accounts for the main difference
between the hole dynamics in the collinear square lattice
AF and the planar triangular AF.

On the square lattice, the hole can hop due to the
zero point fluctuations of the AF background. In this case,
magnon-assisted hopping happens predominantly between
the sites of the same magnetic sublattice. This leads to
a minimum of the hole dispersion at a quarter of a re-
ciprocal lattice vector of the square lattice. By contrast,
on the triangular lattice, hole hopping between nearest
neighbour sites, i.e. between different magnetic sublat-
tices, is also possible without magnon assistance. Thus, for
J � t, where magnon assisted processes are energetically
suppressed, the hole dispersion in the triangular AF will
be dominated by the bare (unassisted) hopping processes.
This has been confirmed by comparing the exact disper-
sion of the bare hole in the 21 site sample for t = 0.1J . The
approximate inclusion of the magnon-assisted processes
in the calculation of the dispersion by the self-consistent
Born approximation has been found to improve the agree-
ment with the exact dispersion. The exact one-hole La-
grangian (10-12), evaluated in spin wave approximation,
leads to results in reasonable agreement with exact nu-
merical diagonalization of small systems. L provides thus
a firm basis for a derivation of a continuum model which
is capable of describing the full non-linearities of the spin
fields in the presence of single holes.

Note added in proof

After completion of this work, we became aware of the
derivation of an effective Hamiltonian for the motion of
holes on the triangular lattice in reference [20]. The ef-
fective Hamiltonian there differs significantly from our re-
sult (15), since the problem arising form the coupling of
the hole motion to the Goldstone modes has been ignored
in [20].

Appendix

A straightforward expansion of L around the classically
ordered state with respect to the fields θ and φ, and a
subsequent integration of ψ leads to the appearance of
zero energy spin wave amplitudes in linear order in the
hopping term Lt. This is in contradiction to the spin ro-
tational invariance of the model (1). In order to resolve the
contradiction, we now verify that this invariance persists
in an appropriate spin wave expansion. In the first order

expansion around the state given by φr = φ
(0)
r , θr = π/2

(cf. Eq. (13)), the critical term Lt reads

Lt = −t
∑
〈r,r′〉

{
η∗r′ηre

− i2 (ψr′−ψr )

×

[
cos

(
φ

(0)
r − φ

(0)
r′

2

)
− sin

(
φ

(0)
r − φ

(0)
r′

2

)

×

(
i
pr + pr′√

2
+
xr − xr′√

2

)]
+ r↔ r′

}
· (A.1)

This expression is valid for both the square, and the tri-
angular lattice. We now perform an infinitesimal homoge-
neous rotation in spin space parametrized by the angles
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ε. The corresponding transformation of the fields can be
read off from (2). The field η is unchanged and the linear
changes in ψ, θ, and φ are (we express the last two fields
by x and p)

ψ′r = ψr + 2
[
εx cosφ(0)

r + εy sinφ(0)
r

]
x′r = xr +

√
2εz

p′r = pr +
√

2
[
−εx sinφ(0)

r + εy cosφ(0)
r

]
. (A.2)

Substituting these rotated fields for the original ones in
(A.1), one sees that εz drops out and the change in the
field pr induced by the other two rotations εx and εy is
compensated by the corresponding change in the field ψr.
Thus, we see that Lt, and hence the whole Lagrangian, is
invariant under an infinitesimal rotation in spin space as
it should be. It is only after the integration over the field
ψ that the invariance appears to be lost.

Turning to the case of the square lattice, where φ
(0)
r =

± π/2 (cosφ
(0)
r = 0), the zero modes are seen to decouple

in ψr and pr (cf. (A.2)), and in Lt the term of zeroth
order in the fields xr and pr vanishes. It is easily verified
from the spin wave expansion of LJ that the zero modes

are given by xr = x, pr = 0 and xr = 0, pr = p sinφ
(0)
r

which both cancel in Lt. After substituting η e
i
2 (ψ−φ(0))

by h, we can integrate over ψ, and return to the operator
form. Thus, the spin wave expansion as sketched in the
main text leads to the correct result [15].

In the case of the triangular lattice, where φ
(0)
r =

2π/3, 0,−2π/3 for the three sublattices respectively, the
zero modes in ψr and pr mix. Again, it is easily verified
from the spin wave expansion of LJ that they are given

by xr = x, pr = 0, and xr = 0, pr = p sinφ
(0)
r , and xr = 0,

pr = p cosφ
(0)
r . The first mode cancels in Lt, but the last

two remain, if one disregards ψ. However, we are free to
apply a canonical transformation to the fields ψ, x, and p
in the path integral. We choose

ψr → ψr +

√
2

3

(
pr +

2

3

3∑
j=1

pr+δj

)

xr → xr +

√
1

6

(
η∗rηr +

2

3

3∑
j=1

η∗r−δjηr−δj

)
pr → pr. (A.3)

(δj = (cosϕj , sinϕj), ϕj = 2π
3 j are three of the six near-

est neighbour vectors.) With this choice (i) the new field
ψ remains invariant under homogeneous rotations in spin
space, i.e. it does not contain a zero mode, and (ii) Lkin
is changed only by a total time derivative which yields
no change in the action (the latter condition is equiva-
lent to the transformation being canonical). After apply-
ing (A.3) to L, all zero modes cancel in Lt. We substitute

η e
i
2 (ψ−3φ(0)) by h, integrate over ψ, and return to the op-

erator representation. The result for H4 is the expression
(15).
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